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Abstract

When a Backward Differentiation Formula method .is used on an ODE problem with a damped
but strongly oscillatory mode, the step size may be unduly limited if the order is three or more. The
performance of existing BDF codes in this situation varies from poor to fair. Analysis of the computed
solution and related quantities in model problems yields a set of relationships that allow- for direct
detection of the stability barrier. The analysis is fairly easy for a complex scalar model problem, but for
a corresponding real system the diagonalizing transformation greatly complicates the relationships. But
a solution of them leads to an algorithm for determining whether a dominant oscillatory mode is limiting
the step size, and to estimate the magnitude of the associated characteristic root. It uses only the norms
of the scaled derivatives of the solution, but bears no resemblance to the common practice of demandmg
monotonicity among these norms.

Running head: Detecting BDF Stability Barriers
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1 IntrOdlictidn

In the initial value problem for an ODE system, suppose that the solution contains a damped but strongly
oscillatory mode. Then the numerical solution by a BDF (Backward Differentiation Formula) method may
well be restricted in step size by the nature of the absolute stability regions. Iﬁ fact, BDF solvers are
infamous for getting stuci( #t an ordér > 3,‘With step size limited by absolute .étability. Moreover, in
tests with simple linear problems, existing BDF solvers are not particularly good at sensing this stability
limitation. Of course, a direct test of the system eigenvalues against the boundary of the absoluté stability
region is impossible. Instead, a BDF solver will attempt to sense the stability limit b); testing various
avq.ila.ble difference expressions. This generally involves calculating the norms of certain scaled derivatives
of the solution. In some solversb, these are tested for a monotonicity condition of some kind. But in all cases,
these algorithms perform erratically on modél problems.

The question grises: Can one do better? Can one use available data to detect reliably when an oscillatory
solution mode is causing the BDF éoluj:ion to be stability-limited? In what follows, an affirmative answer isv
given. The case of a complex scalar model problem is analyzed first. Then a model 2 x 2 real lipear system
is reduced to the complex scalar case. The resulting relatibnships are solved, and the solution leads to a

limit detection janlgori'thm. Finally, some numerical test results are given.

2 The Scalar Mo del Problem

The simplest problem for which thg stability limit issue makes sense is the standard complex scalar model‘,
=2Au (Re()) <0). \ (2.1)

If [Im(X)/Re(2)] is large enough, a BDF solution at order ¢ > 3 will have a stability-limited step size.
Take the step size h to be constant. Then the BDF solution values u,, from (2.1) are linear combinations

of powers of the g characteristic roots z; of the BDF. When h is near its sta.bility limit, one of these, say

21, approaches 1, while |z;| < 1 for j > 1. After a sufficient number of steps, the term in u, involving 2

dominates all the others. In fact we will neglect completely the nondominant terms and write
uy = az! (@ = complex constant). (2:2)

At time step n, let m,(t) be the ihtérpolating polynomial of degree < g which interpolates the solution



{‘un, .-;;:;IUhL:q}-'Deﬁﬁvév scaled derivatives of the solution, vden(')tea'.‘ i

'a,,'(k) = htu®).

‘ :.These are’ deﬁned by- u(k) = w(k)(t ) for k < q, whereas a',,(q + 1) = Va,,(q) In the case a,t ha.nd 7r,,_

o dtnterpolates:a(zl:)‘"'f" (J-:~' joes : ,q) Its leadmg coefficient is glven by a q order backward dlﬁerence
(@) = MR = V(ta) = V“(uéi‘.j_;

',('jlearvly,_ the opera_tor V has the- same action upon 2z} as multin]ication by 1 —'?zl' 1 and so R
(@)= asf(1 - 2;1)“ Lamd @y
Coalat D)= a1 - 5 T )

- To get an(q - 1), use the relatlon V=1- e"‘D between V. and dlﬁ'erentlatlon D to get ‘-

: , _ o qe-t ‘ f 2y

‘ 'V‘I"v1 = (h’D)q'l_ [1 - EhD +-- ] = (hD)"'1 [1 - (T) hD + .. ] T

iq—l a1 gy 4= 1 g—1 R 5 EY
v 7r,,(t,,) = (hD) 7r,,(t,.) —v———.-(hD). 1r(t,,) = a,,(qﬂ— 1.) - —a',.(q). - (29)

On the other hand, V4~ 17r,,(t,.) =azP(l -z 1)*7‘1 Substltutmg thls and (2 3) into (2 5) glves o

o;(q ~1)=az [(1 - z-l)'l—l +2 (1 - z'l)“] = az} (1v - -1)«-‘ [%1. - q ;17.1'1] (:2.'6;) '

We could eyaluate the other on(k) in the saxne way, but ure_' will not ’ineed'.»thexn;. :

In pra_ctice,' the complex scaled derivativ_ee’a,,(k) would not a(:tualfl_y‘ be va\‘railablef. But iwe,’would» expect
» t_hat theivrb rnoduli'would be.‘So define - | | | »' S o ‘ 2 : | o ”
| | n®=l®n e
" Each T a(k) is proportlonal to |21|2" with a constant dependmg on k Our goal is to try to tecouer the value‘

.of |21| from the En(k) If we look at the two ra.tlos
P+ = Enlg + 1)/2,;@) and  p_= z‘n(q - 1)'/2?@), 8

we see that these are 1ndependent of n, but depend on both the modulus and argument of 21 Moreover,‘

- ‘ actual values of these two ratlos taken at various points on the BDF stablhty boundanes show tha.t there i is '

... no correspondence between belng in the absolute stablhty reglon and a monoton1c1ty relatlon such a.s '

E»-'"(q'*””"(q)>,En(q+1',).,,'.’ji‘e;‘_-,;"A_’f_ ey




the failure of which is used as a signal to reduce the order in some BDF solvers. Relation (2.9) holds at some
points inside the absolute stability regibn but not at others, and the same is true outside the region.

“To eliminate the unknown arg(z;), look first at the case |21} = 1, or 2; = ¢'?. We can evaluate

N-z72 =1 —e ¥? = 4s5in?0/2, and

P+
l(g+1)—(a -1z

g+ 1)~ (g — 1) cos8]” + (¢ — 1)sin6)* = 2(¢* + 1) — 2(¢* — 1) cos @

41— 27?p-

4[1+ (¢* — 1)sin® /2]
On identifying the last expression with 4p, p_, we have (for |z;| = 1) a relation not involving §:
: oot |
B= ()= (55) i) -1=0. (210)
Now for arbitrary z; = re*®, consider the same expression B. In terms of w = 1/z; we find
4B =[(g+1)* ~ (¢ - D(w + @) + (¢ — V)*wd] — (¢* - V[1 - (v + @) + wd] — 4
=(2¢—-2)(1 —ww) ,or

B= (2-;—1) (1= |z|?). 211)

This quantity B is a “barrier function” in the following sense: First, from (2.8) and (2.10) it is comi)utable
in terms of the available data—the three values of (k). Secondly, by (2.11) it is precisely sensitive tc') thei
stability barrier, in that it changes sign when |z;| exceeds 1, and only then: B > 0 <= |z;] > 1. Moreover,
given the X,(k), one can evaluate B and deduce the value of |21] exactly. (Since these identities rely only
on the monomiaj form of the data, they hold for any linear multistep method of order ¢, when the multistep

solution is dominated by a single characteristic root.)

3 Real 2 x 2 Model Problem

We turn our attention now the case of a real ODE system, dominated by a damped strongly oscillatory
mode. The systerﬁ éigenvalues will occur in conjugate pairs. Heuristically at least, we can expect that the
. behavior of BDF methods on such a problem will be approximated by their behavior on a corresponding

linear 2 x 2 problem having a nonreal spectrum. We therefore consider a linear problem of the form

§ = Ay . (3.1)



in which A is a constant real 2 x 2 matrix with nonreal eigenvalues A and . Thus A is diagonalizable:

PlAP=D= < 3 f—)\ ) ' o (3.2)

Again wé’consider a BDF solution at order q > 3 with a fixed step size h, such that h is limited by
the absolute stability region. We proceed by reducing this problem to thé,t for the scalar model prdblem
u = Ay, and analyzing the resulting equations for the norms of the scaled derivatives of y. However, this is

one situation in which the answer for the scalar problem does not extend trivially to a linear system.

Abplying P~1 to the BDF defining y,, we see that the vectors u, = P~1y, constitute a BDF solution of
t=Du , or ' =2xul, 4% =2’ (3.3)

For each i, u!, is given in terms of the characteristic roots corresponding to A and A respectively:
q q
ul = Ea}z}' and ul = Ea]?z_j"
j=1 i=1
for some coefficients aj-. From y, = Pu,, the components of y, are
3 q .
Yh = pitup + pigud = Y _(piralz} + pizalz™). (34)
ij=1 . :

For simplicity, we can assume (with no loss of generality) that the eigenvectors of A are normalized
so that p;; > 0 and the second column of P is the conjugate of the first: p;» = Pi1. Excluding isolated
special cases, we can also assume that the z; are are nonreal and independent, and so the y:, being real
implies-p,-;;aj2 = p,'lajl-. (Actually, one can show directly that aJ? = q) Therefore in (3.4), u2 = ul and

Yn = 2Re(pi1u). Assuming as before that z; is completely dominant, we have ul = az? (a = al) and so

4, = 2Re(pi1az}). (3.5)

We next analyze the scaled derivatives of y,, as obtained from the interpolatory polynomial at step n.

- For some M = M(k) and real coefficients y; = 7; (k) depending only on k, these vectors are given by

M (k)
sn(k) = R* () = Y~ 9 (k)yn-;. O (36)
j=0
In terms of the corresponding scaled derivatives of u},
M .
oa(k) = hku,l‘(k) = Z’yju,l,_j :.Zyjaz?"j, (3.7)

j=0



we can then express the components of the s, (k) as

. _
sk (k) = 2Z7jRe(p.-1az;‘_j) = 2Re[pi1on(k)]. ‘ (3.8)
0 .

We seek precise relations among the norms of the vectors sn(k). So we now need to specify the norm

used, and in fact we must assume that it is a weighted £2-norm,
lloll = [(wio')? + (wav?)?)/?
with constant positive weights w;. Now we can evaluate the norms of the scaled derivatives, defining
Sn(k) = ||$n(l<:)||2 = 4{Re[w1p110n (k)]2 + Re[wnglo',.(k)]z}. (3.9)

Recall from (2.3) - (2.6) that for each k, o,(k) is a complex constant (depending on k) times 4 z7', and as

in (2.7) denote E,‘;(k) = |on(k)|? . To simplify the results, define constants

2
p=(wpm)/(mp) . v= 1 0<7<D) (3.10)
co = 2(w1p11)(1 + [pl?) = 2(w1p11)? + (w2lp21)? (3-11)
a.ndbangles
vn(k) = arg [oa(k)2(1 + p?)] = 2n0 + wo(k) , (3.12)

where 0 = arg(z;) and (k) is a constant. With these definitions, we obtain from (3:9) (with o = on(k)) -

Sa(k) = (wipno+ w1P1;5')2 + (wap210 + waP16)? = (wip11)*[(0 + )% + (po + p5)*]
= 2wipn*{lo(1 + |p*) + Re[o®(1 + p))]} = 2(wip11) o [(1 + |oI%) + |1 + p?| cos va (k)]

= 2(wpn)loP (1 + o)L + v cosva(k)] , or
Sn(k) = coZn(k)1 + 7 cos vu(k)]. (3.13)
4 Limit Detection
We now supposevthat the S, (k) are giveh, and are known to satisfy (3.13). The qﬁantitia Ta(k) etc. are
unknown, and the_ next task is to recover these, and |z;| in particular. Begin by defining
R=|zn|? and | Go(k) = colon(k)/ 22> = coZu(k)/R® - (4.1)

so that

Sn(k) = Go(k)R"[1 + 7 cosvu(k)]. | (4:2)

ey



An important special case arises when the matrix A is normal. Then it is easy to show that ps/p1; = +i.

If in addition the two weights w; are equal, then we have p = 4i and v = 0 by (310) In this case, S,(k) is

proportional to (k) and hence to R*, and so the ratios S,+1(k)/S, (k) yield |z;| directly. '

For the general case, we must eliminate the unknown oscillatory term in (4.2). Fix n ‘and k, and

(dropping the k for brevity) consider the consecutive values {Sn-2,53-1,50, 541, Sn+2}. On expanding

Snx1 and Sp42, Eqns. (4.2) for these constitute five equations in t}ll‘e five unkown parameters Go, Goy cos vy,
thedw

Goysinvy,, R, and cos 20. They can be solved by #M#g exploiting Alineau-it:y in the first three unknowns.

We can temporarily eliminate the variable R by working instead with quantities
Sm = SmR* ™ = coEn(1+ ycosvym) (m=n-— 2,.- con+2). (4.3)
The expansion of these quantities is best expressed in terms of difference operatjons. Temporarilyv define
C=cos20, S=sin20, c¢m=coSVm, Sm =sinvpy,.

We use (3.12), or vm = 2m8 + vy, to express the differences of the ¢,,, and among the resulting equations is

AZcp = =2(1 — C)em41. Applying differences to S = coXn(1 + y¢m), We obtain

AS, = cpXpyAc, (4.4)
A%S,.1 = —2(1-C)eoTnryen ‘ (4.5)
A38,_1 = =2(1=C)eoTavAcy. (4.6)

Together, these equations easily yield the value of 1 — C and then ¢oX,ve,:

~2(1-C)=A35,_,1/AS, @
coBnyen = A5, 1 /[-2(1 — C)] = A28, _1A S, /A3, _,. (4.8)

Finaljy, we have
Cozn = Sn - co):,,'ycn = S’n - Azs'n_lAS'n/AaSn_l. (49)

Eq. (4.9) gives ¢oX, in terms of R and S,,_1, Sn, Sn+1,5n+2. To get another equation in these unknown

parameters, we repeat the above process with the 4-tuple S,_3,---,S,41. In analogy with (4.7), we obtain

21 -C) = A3%8,_,/AS,_,. ' (4.10)



Of course, (4.7) and (4.10) must agree, giving one more equation, which is (in terms of the Sn)

Snt2 o Sn41 _{Sas1 2 Sn+1
(—;72— - 3—R— +35, -~ RS,_1}(Sn —‘RS,;..l) = —ER_ —35,+3RS;-1 — R°Sn-2 R Sn .

Multiplication by R? gives a quartic equation in R,

Q(R) = b4R* + baR® + bjR+bo = 0 with (4.11)

by = (Sn—1)®—SnSn-2, b3=Snt1Sn-2 = SnSn-1,

bl = Sn+lsn - Sn+2Sn-—1a by = Sn+2Sn - (Sn+1)2-

For each & =¢—1,q,q+ 1, the above procedure gives rise to a quartic @¢(R). The normal matrix case
must be isolated first, because.the coefficients in (4.11) all vanish when 7 — 0. Otherwise, if in fact the
data do correspond to a dominant oscillatory mode, these three quartics will have a common root R. Thus
we n‘eed not solve them individuallly, but instead can use elimination on them. Because they have no R?
term, this yields a linear equation for R assuming that the quartics are linearly independent. Once that
common toot is obtained, one can return to (4.7) - (4.9) to evaluate the other unknowns, partxcularly the

three cgEn(Ic) Using the ratlos of these, we can evaluate the right-hand side of the relation

¢—1 o p_ Zalg+1) [Salg-1) £-11 ‘
(T)“‘R )= 8= 3.1 [ @) 4 ]'1 | (4.12)

[from (2.8), (2.10), and (2.11)}, and solve this for R, givingd R = Rp = [L — 2B/(¢ — 1)]!. This value

can be checked for agreement with the value of R obtained directly from the quartics.
This solution procedure, along with a test for the normal (or nearly normal) case, leads to the following
crude algorithm. It includes various consistency checks to verify the validity of the dominant mode model.

Limit Detection Algorithm:

1. If h has been constant > 5 steps and ¢ > 3, collect the 15 values of Sy, (k).

2. For each k, look at the variance of the Sp41(k)/Sm (k). If all are small, get R from these ratios (4 nearly
normé,l). If the R vaiues are not consistent, exit. If a consistent R is found, go to 4.

3. Form the three quartics Qi in (4.11) and eliminate to get a tentative R. If the @ are dependent, exit.
Evaluate the Qx(R) and do Newton corrections to R if necessary. If the new Qx(R) are not all small, exit.
4. From R, get the coZ, (k) by (4.9), then B and the solution Rp from (4.12). If this disagrees with R, exit.

5. If R= 1, or R > 1, signhal a reduction in order.
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5 Numerical Tests

The above algorithm, filled in with heuristic factors, was tested on data from 2 x 2 systems (3.1), as follows.

For a choice of ODE system, consider first the Toronto test Problem B5, which is dominated by mode

with A = —10 4 100:. But in that system, thg 2 x 2 block is a normal n\la.'trix
~10 100 _ '
Ao = ( ~100 —10 ) (5.1)
We can generate non-normal A by a similarity transformation

T= ( (1] « ) . A=TAT . , (5.2)

The initial values and analytic solution for §'= Ay are those of Problem BS multiplied by 7.

A BDF solver (VODE) was run on this problem with scalar absolute error control, and all of the squ@red
scaled derivatives S (k) were written to a file. The limit detection algorithm was applied separately to
selected subsequences. Generally, the performance of the algorithm is quite good. On data too early in |
the solution, or too soon after a change in step size or order, it fails, as expected. But it succeeds in the
situations for which it was meant, élthough it is subject to further tuning. The following example is typical.
Example: a=1, ¢g=5, himir = .008979, h/hymi = .989

Sp(k) data:

n
149
150
151
152
153

g-1
6.370379026002e+02
1.876023089446e4-02
9.246250495632e402
6.910744968119e+02
1.547105532689e+02

q
4.855836384281e+-01
5.597922189165e+01
1.471330276210e+02
5.673251338505e+4-01
4.374817040913e+01

q+1
5.953518464302e+01
1.416568269282e-+02
4.919635341570e+01

. 4.764253375368e+01

1.355841534733e+02

Elimination among the three quartics..

Q4.. -5.538266e+05 2.66778%¢+05 0. 6.099607e+05 -3.345347e+05
reduced (Js.. -7.413593e+03 0. 1.480843e+03  5.640956e+03
reduced @s.. 4.122677e+03 0. 2.012189e+03 -5.951487e+03
reduced Qs.. 0. 2.835682e¢+03 -2.814569e¢+403
Root from elimination is.. R = 0.9925546
From Newton iteration 1.. R= 0.9856203

Estimated coXn(k): 5.907911e4+02  8.424955e+01 7.964971e+01

Estimated B = -0.04288 Rp = 0.9790100

From a separate calculation of the true root z;.. Rirue = 0.9827322

The errors in the two computed values of R are both under 0.4%.
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